

 $R_{S} \xrightarrow{C_{gd}} + \underbrace{V_{s} \xrightarrow{c}}_{Qs} \xrightarrow{C_{gs}} g_{m}v_{gs} \xrightarrow{C_{db}} r_{o} \xrightarrow{r_{oc}} R_{L} v_{out}$

C_{db}: Capacitance between drain and body Due to depletion-layer between D and B

$$DEN = 1 + j\omega \{R_S C_{gs} + R_S C_{gd} [1 + R'_{out} (\frac{1}{R_S} + g_m)] + R'_{out} C_{db} \} - \omega^2 R_S R'_{out} C_{gs} (C_{gd} + C_{db})$$

Assumptions for simplication:

(1)
$$\omega \ll \omega_T = \frac{g_m}{C_{gs} + C_{gd}} \Rightarrow g_m \gg \omega(C_{gs} + C_{gd}) > \omega C_{gs}, \ \omega C_{gd}$$

(2): Ignore ω^2 term
(3): $\frac{1}{R_S} + g_m \simeq g_m$

$$A_v \simeq \frac{-g_m R'_{out}}{1 + j\omega [R_S C_{gs} + R_S C_{gd}(1 + g_m R'_{out}) + R'_{out} C_{db}]}$$

$$\text{Or } A_v(\omega) = \frac{A_{v,LF}}{1 + j\frac{\omega}{\omega_H}} \quad \text{with} \quad \omega_H = \frac{1}{R_S C_{gs} + R_S C_{gd}(1 + g_m R'_{out}) + R'_{out} C_{db}}$$

Frequency response of CS limited by C_{gs} , C_{gd} for input and C_{db} for output.

Compare f_H with f_T

$$f_{H} = \frac{1}{2\pi \{ R_{S}[C_{gs} + C_{gd}(1 + |A_{v,LF}|)] + R'_{out}C_{db} \}}$$
$$f_{T} = \frac{g_{m}}{2\pi (C_{gs} + C_{gd})}$$

 $f_H \ll f_T$

Mainly because $f_{\rm H}$ has $A_{v, \rm LF}$ in denominator making $C_{\rm qd}$ effectively very large

➔ Miller Effect

 $\begin{array}{c} \text{Miller Effect} \\ & & & & & \\ & & & &$

→ Less impedance → Larger capacitance

In CS, C_{ad} causes Miller effect: Larger gain \rightarrow Slower

Is it always bad? Can be used for implementing large capacitor values in IC.

Does CD suffer from Miller effect?

A_v is almost 1!

Does CG suffer from Miller effect?

No Miller capacitor!

Design large gain, high-speed transconductance amplifier

Design large gain, high-speed transconductance amplifier

Assuming ideal current buffer,

$$\frac{i_{out}}{v_{in}} = -g_m \quad (CS + CG)$$

$$\frac{\dot{k}_{out}}{v_{in}} = -g_m \frac{r_o}{r_o + R_L} \quad (\text{CS only})$$

In addition, CG is fast!

For a given target gain,

we can achieve higher speed transconductance speed amp by reducing $g_m!$

➔ Cascode amplifier

