Lect. 7: Amplifier Frequency Response

Electronic Circuits 2 (07/1)

Lect. 7: Amplifier Frequency Response

C_{db} :
Capacitance between drain and body
Due to depletion-layer between D and B

Lect. 7: Amplifier Frequency Response

$$
A_{v}=\frac{-\left(g_{m}-j \omega C_{\text {gd }}\right) R_{\text {out }}^{\prime}}{D E N}
$$

$$
D E N=1+j \omega\left\{R_{S} C_{g s}+R_{S} C_{g d}\left[1+R_{\text {out }}^{\prime}\left(\frac{1}{R_{S}}+g_{m}\right)\right]+R_{\text {out }}^{\prime} C_{d b}\right\}-\omega^{2} R_{S} R_{\text {out }}^{\prime} C_{g s}\left(C_{g d}+C_{d b}\right)
$$

Assumptions for simplication:
(1) $\omega \ll \omega_{T}=\frac{g_{m}}{C_{g s}+C_{g d}} \Rightarrow g_{m} \gg \omega\left(C_{g s}+C_{g d}\right)>\omega C_{g s}, \omega C_{g d}$
(2): Ignore ω^{2} term
(3): $\frac{1}{R_{S}}+g_{m} \simeq g_{m}$

Lect. 7: Amplifier Frequency Response

$$
A_{v} \simeq \frac{-g_{m} R_{\text {out }}^{\prime}}{1+j \omega\left[R_{S} C_{g s}+R_{S} C_{g d}\left(1+g_{m} R_{\text {out }}^{\prime}\right)+R_{\text {out }}^{\prime} C_{d b}\right]}
$$

Or $A_{v}(\omega)=\frac{A_{v, L F}}{1+j \frac{\omega}{\omega_{H}}}$ with $\quad \omega_{H}=\frac{1}{R_{S} C_{g s}+R_{S} C_{g d}\left(1+g_{m} R_{\text {out }}^{\prime}\right)+R_{\text {out }}^{\prime} C_{d b}}$
Frequency response of CS limited by $\mathrm{C}_{\mathrm{gs}}, \mathrm{C}_{\mathrm{gd}}$ for input and C_{db} for output.

Lect. 7: Amplifier Frequency Response

Compare f_{H} with f_{T}

$$
\begin{aligned}
f_{H} & =\frac{1}{2 \pi\left\{R_{S}\left[C_{g s}+C_{g d}\left(1+\left|A_{v, L F}\right|\right)\right]+R_{o u t}^{\prime} C_{d b}\right\}} \\
f_{T} & =\frac{g_{m}}{2 \pi\left(C_{g s}+C_{g d}\right)} \\
f_{H} & \ll f_{T}
\end{aligned}
$$

Mainly because f_{H} has $A_{v, L F}$ in denominator making C_{gd} effectively very large
\rightarrow Miller Effect

Lect. 7: Amplifier Frequency Response

Miller Effect

$$
\begin{gathered}
C_{\text {Miller }}=C\left(1+A_{v}\right) \\
v_{\text {in }} \uparrow \Rightarrow v_{\text {out }}=-A_{v} v_{\text {in }} \downarrow \downarrow \Rightarrow\left(v_{\text {in }}-v_{\text {out }}\right) \uparrow \uparrow \Rightarrow i_{\text {in }} \uparrow \uparrow
\end{gathered}
$$

\rightarrow Less impedance \rightarrow Larger capacitance
In CS, $\mathrm{C}_{\text {gd }}$ causes Miller effect: Larger gain \rightarrow Slower
Is it always bad? Can be used for implementing large capacitor values in IC.

Lect. 7: Amplifier Frequency Response

Does CD suffer from Miller effect?

A_{v} is almost 1 !

Lect. 7: Amplifier Frequency Response

Does CG suffer from Miller effect?

No Miller capacitor!

Lect. 7: Amplifier Frequency Response

Design large gain, high-speed transconductance amplifier

Start with CS

$$
\begin{aligned}
& i_{\text {out }}=\frac{A_{v o} v_{\text {in }}}{r_{o}} \frac{r_{o}}{r_{o}+R_{L}}=\frac{-g_{m} r_{o} v_{\text {in }}}{r_{o}} \frac{r_{o}}{r_{o}+R_{L}}=-g_{m} v_{i n} \frac{r_{o}}{r_{o}+R_{L}} \\
& \frac{\boldsymbol{i}_{\text {out }}}{\boldsymbol{v}_{\text {in }}}=-\boldsymbol{g}_{m} \frac{\boldsymbol{r}_{o}}{\boldsymbol{r}_{o}+\boldsymbol{R}_{L}} \quad \text { Problem if } \mathrm{R}_{\mathrm{L}}>\mathrm{r}_{\text {o }} \\
& \rightarrow \text { Use current buffer }
\end{aligned}
$$

Lect. 7: Amplifier Frequency Response

Design large gain, high-speed transconductance amplifier
Add CG Stage

Assuming ideal current buffer,

$$
\frac{i_{\text {out }}}{v_{\text {in }}}=-\boldsymbol{g}_{m}(\mathrm{CS}+\mathrm{CG}) \quad \frac{i_{\text {out }}}{v_{\text {in }}}=-\boldsymbol{g}_{m} \frac{r_{o}}{r_{o}+R_{L}} \text { (CS only) }
$$

In addition, CG is fast!
For a given target gain, we can achieve higher speed transconductance speed amp by reducing g_{m} !
\rightarrow Cascode amplifier

